منابع مشابه
A note on the remainders of rectifiable spaces
In this paper, we mainly investigate how the generalized metrizability properties of the remainders affect the metrizability of rectifiable spaces, and how the character of the remainders affects the character and the size of a rectifiable space. Some results in [A. V. Arhangel'skii and J. Van Mill, On topological groups with a first-countable remainder, Topology Proc. 42 (2013...
متن کاملa note on the remainders of rectifiable spaces
in this paper, we mainly investigate how the generalized metrizability properties of the remainders affect the metrizability of rectifiable spaces, and how the character of the remainders affects the character and the size of a rectifiable space. some results in [a. v. arhangel'skii and j. van mill, on topological groups with a first-countable remainder, topology proc. 42 (2013...
متن کاملA remark on Remainders of homogeneous spaces in some compactifications
We prove that a remainder $Y$ of a non-locally compact rectifiable space $X$ is locally a $p$-space if and only if either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact, which improves two results by Arhangel'skii. We also show that if a non-locally compact rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal, then...
متن کاملUnions of Rectifiable Curves and the Dimension of Banach Spaces
To any metric space it is possible to associate the cardinal invariant corresponding to the least number of rectifiable curves in the space whose union is not meagre. It is shown that this invariant can vary with the metric space considered, even when restricted to the class of convex subspaces of separable Banach spaces. As a corollary it is obtained that it is consistent with set theory that ...
متن کاملNonhomogeneity of Remainders, Ii
We present an example of a separable metrizable topological group G having the property that no remainder of it is (topologically) homogeneous. 1. Introduction. All topological spaces under discussion are Tychonoff. A space X is homogeneous if for any two points x, y ∈ X there is a homeomorphism h from X onto itself such that h(x) = y. If bX is a com-pactification of a space X, then bX \ X is c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2010
ISSN: 0166-8641
DOI: 10.1016/j.topol.2009.08.028